

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01 Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Edexcel and BTEC Qualifications

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number 74327 Publications Code WST02_01_ rms_20240118 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if **the candidate's response is not worthy of credit** according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

`M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - o the symbol $\sqrt[4]{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- The answer is printed on the question paper
 The means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme			
1 (a) (i)	<i>X</i> ~ B((14,0.2)			
	P(X =	$P(X=2) =]^{14}C_2 \times 0.2^2 \times 0.8^{12}$			
		= 0.2501 awrt 0.2501			
(ii)	$X \sim B(X)$	25,0.2)			
	P(X > 3)	$A_{3} = 1 - P(X \le 3) = 1 - 0.2340$ or $1 - (0.0038 + 0.0236 + 0.0708 + 0.1358)$	M1		
		= 0.7660 awrt 0.766	A1		
			(4)		
(b)(i)	[np=6]	\Rightarrow] $n = \frac{6}{0.2}$	M1		
		= 30	A1		
			(2)		
(ii)	$Y \sim B(r$	$(n, 0.2)$ we require $P(Y \ge 1) > 0.95$			
	1 - P(Y)	$= 0) > 0.95 \Longrightarrow P(Y = 0) < 0.05$	M1		
	$\begin{bmatrix} {}^n C_0 \times C_0 \end{bmatrix}$	0.2^{0}]× 0.8^{n} < 0.05	M1		
	$0.8^{14} = 0$	$0.04398[<0.05] n > \frac{\ln 0.05}{\ln 0.8} \Rightarrow n > 13.425$	dM1		
		n = 14	Al		
			(4)		
		Notes	Total 10		
(a) (i)	M1	For writing or using ${}^{14}C_2 \times 0.2^2 \times 0.8^{12}$ (Allow 91 for ${}^{14}C_2$)			
	A1	awrt 0.2501 NB 0.2501 with no working scores M1A1			
(ii)	M1	For writing or using $1 - P(X \leq 3)$			
	A1	awrt 0.766 NB awrt 0.766 with no working scores M1A1			
(b)(i)	M1	For use of $np = 6$ e.g $0.2n = 6$ (Allow \ge)			
	A1	Cao			
(ii)	M1	For writing or using $P(Y \ge 1) = 1 - P(Y = 0)$ (Allow $P(Y \ge 1) = 1 - P(Y \le 0)$)			
	M1	For $0.8^n < 0.05$ oe (Allow = or \leq)			
	dM1 Dependant on previous M1 For substitution of <i>n</i> (allow $0.8^{13} = 0.05497$) or rearranging to $n >$ (Allow = or \ge) If using logs allow any base e.g. $n > \log_{0.8} 0.05$				
	A1	Сао			

Question		Scheme			
2(a)	[Mode -	=1 4			
2 (a)					
(b)	$a\int^4 x^3 dx$	$x = \frac{1}{3} \Rightarrow \left a \right \frac{x^{-1}}{3} = \frac{1}{3}$		M1	
	J ₀	$2 \exists \lfloor 4 \end{bmatrix}_0 2$			
	$64a - \frac{1}{2}$	$\Rightarrow a = \frac{1}{1} *$		۸1*	
	$\frac{0+u}{2}$	$\rightarrow u - \frac{1}{128}$		AI	
				(2)	
	0.5 N				
(c)		$\frac{1}{2} \times \frac{1}{2} \times (d - d)$	4) = $\frac{1}{2}$ or $\frac{1}{2} \times \frac{1}{2} \times (d-4) + \int_{-4}^{4} ax^{3} dx = 1$	M1	
			$2 \qquad 2 \qquad 2 \qquad \mathbf{J}_0$		
	4 L	$\longrightarrow d$			
	d - 6			Δ 1	
	u = 0			(2)	
	1			(2)	
(4)	$-\frac{1}{2}$	Γ 1]	h + c = 0.5	MI	
(u)	$b = \frac{2}{ 6 -4} = -\frac{1}{4}$				
	0				
	$0 = -\frac{1}{4}$	$\times '6' + c$ or $\frac{1}{2} = ' - \frac{1}{4}' \times 4 + c$	10b + 2c = 0.5 oe or '6' $b + c = 0$ oe	M1	
		$b = \frac{1}{2}$	$a_{1}a_{2}$	A 1	
		$b = -\frac{1}{4}$ at	$la c = \frac{1}{2}$	AI	
				(3)	
			Notes	Total 8	
(a)	B1	Cao			
(b)	M1	For integrating the 1^{st} line of the pdf and setting = 0.5 Ignore limits			
	A1*	Answer is given so a correct solution must be seen with no errors. There must be at least one line			
		of correct working from the M mark to the final answer.			
(c)	M1	Mark parts c and d together			
(0)	A1	For setting the area of the triangle = 0.5			
(1)	A correct method for finding <i>b</i> ft their <i>d</i> value				
(d)	M1	or $4b + c = 0.5$ oe (this may be seen any part of this question) Allow $4b + c = 64a$			
		A correct method for finding c ft	their b and d value		
	M1	or $10b + 2c = 0.5$ oe or ' <i>d</i> '× <i>b</i> +	c = 0 oe (these may be seen any part of this question) Allow	
		db + c = 0			
	A1 For both b and c correct NB $b = -0.25$ oe and $c = 1.5$ oe will score $3/3$				

Question		Scheme	Marks			
3(a)(i)	3 + [0] +	20 - 32*	B 1*			
(ii)	$\frac{3+10}{3+15+}$	$\frac{3+15+29}{3+15+29} = 47*$				
(11)	5 1 1 5 1		(2)			
(b)	$\mathbf{f}(t) = \begin{cases} \\ \\ \end{cases}$	$ \frac{1}{15} 32 \leqslant t \leqslant 47 \\ 0 \text{otherwise} $	M1 A1			
(c) (i)	$[\mathbf{F}(T) = 1]$	30.5 oe	(2) R1			
$(\mathbf{c})(\mathbf{l})$	$[\mathbb{L}(I) -]$	$(17 - 22)^2$	DI			
(ii)	$\left[\operatorname{Var}(T)\right]$	$=]\frac{(47-32)}{12}$	M1			
	$\frac{75}{4} = 18.$	75	A1 (2)			
		1	(3)			
(d)	(40-32	$(40-32) \times \frac{1}{15}$				
	_ 8		A 1			
	$-\frac{15}{15}$	$=\frac{1}{15}$				
			(2)			
		Notes	Total 9			
(a)(i)	B1*	For $3 + [0] + 29$				
(ii)	B1*	For 3 + 15 + 29 Allow 32 + 15				
(b)	M1	For $f(t) = \frac{1}{15}$ $32 \le t \le 47$ Allow use of < instead of one/both \le signs. Allow the use of any letter for $f(t)$ and t (Condone inconsistent use of letters) but we m $f(t)$ and an inequality	ust have			
	A1	Fully correct pdf $f(t) = \begin{cases} \frac{1}{15} & 32 \le t \le 42 \\ 0 & \text{otherwise} \end{cases}$ Allow use of < instead of one/both \le signs Allow equivalent for the 0 otherwise.				
(c)(i)	B 1	For 39.5 oe				
(ii)	M1	For use of $Var(T) = \frac{(\beta - \alpha)^2}{12}$				
	A1	For 18.75 oe				
(d)	M1	For use of $(40 - \alpha) \times \frac{1}{\beta - \alpha}$				
	A1	For $\frac{8}{15}$ oe Allow awrt 0.533				

Question Number		Scheme				Marks	
4 (a)	0.2×£10-	$0.2 \times \pounds 10 + 0.3 \times \pounds 12 + 0.5 \times \pounds 15$				M1	
	=[f]1310					Δ1	
	[]					(2)	
	10 10 1	0	12 12 12	15 15 15		(2)	
	10 10 1	0 2 (×3)	$12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \$	$13 \ 15 \ 15$ $12 \ 15 \ 15 \ (\times 3)$			
(b)	10 10 1	5 (×3)	$12 12 13 (\times 3)$ 10 12 12 (×3)	$12 15 15 (\times 3)$ 10 15 15 (×3)		B1 B1	
	10 12 1	5 (×6)	10 12 12 (0)				
						(2)	
(c)	P(10) = 0	0.2	P(12) = 0.3	P(15) = 0.5		B1	
	Median of	can be 10, 12	or 15			B1	
	P(M=1)	$(0) = 0.2^3 + 0.2^3$	$2^2 \times 0.3 \times 3 + 0.2^2 \times 0.5$	$\times 3$ or $1 - 0.8^3 - 3 \times 0.5$	$8^2 \times 0.2$	M1	
	$\mathbf{D}(M-1)$	$\frac{1}{2} - 0.3^3 + 0.3^3$	$a^2 \times 0.5 \times 3 + 0.3^2 \times 0.2 \times 0.2$	x3+02×03×05×6		M1	
	$\Gamma(M - 1)$	(2) = 0.3 + 0.3	$\frac{1}{2}$ $\frac{1}$	$(3+0.2\times0.3\times0.3\times0)$) . .		
	P(M = 1)	$(5) = 0.5^3 + 0.5$	$^{2} \times 0.3 \times 3 + 0.5^{2} \times 0.2 \times$	3 or $1-0.5^{\circ}-3\times0.5^{\circ}$	4×0.5	M1	
		М	10	12	15		
	D		13 _ 0.104	99 - 0.206	1_05	A1	
	P(/	M = m)	$\frac{1}{125} = 0.104$	$\frac{1}{250} = 0.390$	$\frac{-0.3}{2}$		
	-				<u> </u>	(6)	
			N	otes		Total 10	
(a)	M1	For 0.2×10+	For $0.2 \times 10 + 0.3 \times 12 + 0.5 \times 15$ May be implied by a correct answer				
	A1	Cao Allow 1	Cao Allow 13.1				
(b)	B1	B1 for at lea	B1 for at least 5 possible combinations. Ignore repeats. May be seen in part c				
	B1	For all 10 po	For all 10 possible combinations. Ignore repeats. May be seen in part c				
(c)	<u>B1</u>	Correct prob	Correct probabilities – may be seen in an equation or implied by a correct probability				
	B1 M1	All 3 median	All 3 medians and no extras				
	M1 M1	A correct method for one of the probabilities (May be implied by a correct probability)					
	A correct method for all three probabilities (May be implied by 3 correct probabilities					s)	
	M1	or 3 probabi	lities that add to 1			~,	
	A1	Cao Need no	ot be in a table but prob	abilities must be attach	ed to the correct median		

Question Number		Scheme	Marks			
5 (a)	Compl	aints received are independent or occurring at a constant rate or singly	B1			
			(1)			
(b)(i)	$\left[P(X < $	$(3 X \sim Po(6)) =]0.0620$ awrt 0.062	B1			
(ii)	$\Big[P \Big(X \geqslant$	$(a = 6) =]1 - P(X \le 5) \text{ or } 1 - 0.4457 = 0.5543$ awrt 0.554	M1A1			
			(3)			
(c)	$\mathrm{H}_{0}:\lambda$ =	$= 6 \qquad H_1: \lambda > 6$	B1			
	$P(X \ge 1)$	$12 = 1 - P(X \le 11) = [1 - 0.9799]$ or $P(X \ge 11) = 1 - P(X \le 10) = [1 - 0.9574]$	M1			
	$= 0.0201 \qquad \text{or} CR \ge 11$					
	Reject 1	H ₀ /In the CR/Significant	M1			
	There is is great	s sufficient evidence to suggest that the mean number of complaints received ter than 6 per week	A1ft			
			(5)			
(d)	$H_0: \lambda =$	$= 6 \qquad H_1: \lambda < 6$	B1			
	6 week	period is $Po(36) \Rightarrow N(36, 36)$	B1			
	$P(Y \leq 2)$	$P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$	M1 M1			
	$\left[P\left(Z < \right)\right]$	(-1.583)] = 0.0571(Calculator 0.05667) or $x < 25.63awrt 0.057 awrt 25.6$	A1			
	Do not	reject H ₀ /Not in the CR/Not significant	M1			
	There is	s insufficient evidence to suggest that the mean number of complaints	Δ 1 Ω			
	received after the changes made is less than 6 per week					
		Notes	Total 16			
(a)	B1	constant rate or singly	indom or			
(b)(i)	B1	awrt 0.062				
(ii)	M1	For writing or using $1-P(X \le 5)$ May be implied by awrt 0.554				
	A1	awrt 0.554				
(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ				
	M1	For writing or using $1 - P(X \le 11)$ or $1 - P(X \le 10)$				
	Al	For 0.0201 or CR ≥ []				
		A correct statement – no context needed but do not allow contradicting non contextual Correct conclusion in context with the words highlighted in bold	comments			
(1)	D1	Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of	36 rather			
(d)	DI	than 6				
	B1	For writing or using N(36, 36) $255/2(265 + 1)$	1' '			
	M1	For standard lising using 25.5/26/26.5, their mean and their standard deviation or standard using $x=0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.64	rdising 149			
	M1	For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$,			
	A1	awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0)				
	× 1 1 N // 1	or CR < awrt 25.6 (Allow ≤)	4			
	111	A correct statement – no context needed but do not allow contradicting non contextual Correct conclusion in context with the words in hold (Allow The mean number of con	comments			
	A1ft	staved the same/not changed oe)	Pranto nas			

Question Number		Scheme			
6(a)	$\left[\mathbf{P} \right(Y$	$\left[P\left(Y < \frac{1}{4}k \mid Y < k\right) = \right] \frac{F\left(\frac{1}{4}k\right)}{F(k)} = \frac{\frac{1}{21}\left(\frac{k}{4}\right)^2}{\frac{1}{21}k^2} = \frac{1}{16} \text{ oe}$			
			(2)		
(b)	$\frac{1}{21}k^2$	$= -\frac{1}{15}k^{2} + \frac{4}{5}k - \frac{7}{5} \qquad \left[\frac{d}{dy} \left(\frac{1}{21}y^{2} \right) = \frac{2}{21}y \text{ or } \frac{d}{dy} \left(\frac{2}{15} \left(6y - \frac{y^{2}}{2} \right) - \frac{7}{5} \right) = \frac{2}{15}(6-y)$	M1		
	$\Rightarrow 4k$	$d^{2} - 28k + 49 = 0$ oe $\left(\frac{d}{dy}\left(\frac{1}{21}y^{2}\right) = \frac{2}{21}y \& \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^{2}}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6-y)$	A1		
	\Rightarrow (2	$(k-7)^2 = 0$ $\frac{2}{21}k = \frac{2}{15}(6-k)$	M1		
		$k = \frac{7}{2}$ oe	A1		
			(4)		
(c)	f(<i>y</i>)=	$f(y) = \begin{cases} \frac{2}{21}y & 0 \le y \le 3.5' \\ \frac{2}{15}(6-y) & 3.5' \le y \le 6 \\ [0] & [otherwise] \end{cases}$			
	$E(Y) = \frac{2}{21} \int_{0}^{3.5'} y^2 dy + \frac{2}{15} \int_{3.5'}^{6} (6y - y^2) dy \Rightarrow \frac{2}{21} \left[\frac{y^3}{3} \right]_{0}^{3.5'} + \frac{2}{15} \left[3y^2 - \frac{y^3}{3} \right]_{3.5'}^{6}$				
	$\frac{2}{21}\left(\frac{343}{24}\right) + \frac{2}{15}\left(\frac{325}{24}\right) = \frac{19}{6} = 3.166$ awrt 3.17				
(a)	M1	For a correct probability statement or a correct ratio of probabilities	10tal 12		
(u)					
	AI	A1 For $=\frac{1}{16}$ of 0.0625			
(b)	M1	M1 For setting the two lines of the cdf = to each other or $\frac{2}{21}y$ or $\frac{2}{15}(6-y)$ (Implied by a correct 3TQ)			
	A1 For a correct 3TQ or $\frac{2}{21}y$ and $\frac{2}{15}(6-y)$				
	M1 For solving their 3TQ. If the 3TQ is not correct, then a correct method must be shown or setting their				
	2 lines of the pdf = to each other A1 $k = 3.5$ oe NB $k = 3.5$ with no incorrect working scores 4/4				
(c)	M1	M1 Attempting to differentiate 1 of the functions. May be seen in part (b) or in an attempt to find E(Y)			
	M1	M1 Attempting to differentiate both with one correct. May be seen in part (b) or in an attempt to find $E(Y)$			
	M1 For writing or using $E(Y) = \int_0^{3.5} y f(y) dy + \int_{3.5}^6 y f(y) dy$ Ignore limits				
	M1	M1 For attempting to integrate			
	Dependent on previous M1. For substitution of limits, must be 0 or 6 and ft their 3.5. May be implied				
	by $\frac{47}{36}$ oe or $\frac{03}{36}$ oe or $\frac{19}{6}$ oe. If the integral is not correct, then we must see evidence of substitution.				
	dA1 Dependent on previous M1. For $\frac{17}{6}$ or awrt 3.17				

Question Number		Scheme	Marks			
7(a)	$\frac{97.5-1}{\sigma}$	$\frac{\mu}{\sigma} = 1.25$ $\frac{85.5 - \mu}{\sigma} = -0.75$	M1 M1 M1 M1 M1			
	$2\sigma = 12$	2	M1			
	$\sigma = 6 *$	$\begin{bmatrix} \mu = 90 \end{bmatrix}$	dA1*			
			(7)			
(b)	np = 9	0 and $np(1-p) = 36$	M1			
	1 - p =	0.4	M1			
	p = 0.0	6 and $n = 150$	Al			
		(3)				
		Notes	Total 10			
		NB Condone use of <i>np</i> for μ and $\sqrt{np(1-p)}$ for σ				
(a)	M1	For standardising using 96.5/97/97.5 and = z value, where $1 < z < 1.5$				
	M1	For standardising using $85.5/86/86.5$ and $= z$ value, where $-1 < z < -0.5$				
	M1	For use of a correct continuity correction in either equation				
	M1 For a correct <i>z</i> value used in either equation					
	M1 An attempt at both equations with one fully correct					
	M1	For solving simultaneously eliminating μ or σ As this is a show that question then we	orking must			
	be seen.					
	dA1 Dependent on all previous M marks being awarded $\sigma = 6 *$					
(b)	M1	For $np = \mu$ and $np(1-p) = \sigma^2$ Follow through their μ (Condone $npq = \sigma^2$)				
	M1	For solving simultaneously. May be implied by a correct value for <i>p</i> and <i>n</i>				
	A1	Both $p = 0.6$ and $n = 150$				